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Abstract. Reachability analysis is a fundamental problem for safety
verification and falsification of Cyber-Physical Systems (CPS) whose
dynamics follow physical laws usually represented as differential equa-
tions. In the last two decades, numerous reachability analysis methods
and tools have been proposed for a common class of dynamics in CPS
known as ordinary differential equations (ODE). However, there is lack of
methods dealing with differential algebraic equations (DAE), which is a
more general class of dynamics that is widely used to describe a variety
of problems from engineering and science, such as multibody mechan-
ics, electrical circuit design, incompressible fluids, molecular dynamics,
and chemical process control. Reachability analysis for DAE systems is
more complex than ODE systems, especially for high-index DAEs be-
cause they contain both a differential part (i.e., ODE) and algebraic
constraints (AC). In this paper, we propose a scalable reachability anal-
ysis for a class of high-index large linear DAEs. In our approach, a high-
index linear DAE is first decoupled into one ODE and one or several
AC subsystems based on the well-known Marz decoupling method utiliz-
ing admissible projectors. Then, the discrete reachable set of the DAE,
represented as a list of star-sets, is computed using simulation. Unlike
ODE reachability analysis where the initial condition is freely defined by
a user, in DAE cases, the consistency of the initial condition is an essen-
tial requirement to guarantee a feasible solution. Therefore, a thorough
check for the consistency is invoked before computing the discrete reach-
able set. Our approach successfully verifies (or falsifies) a wide range of
practical, high-index linear DAE systems in which the number of state
variables varies from several to thousands.

1 Introduction

Reachability analysis for continuous and hybrid systems has been an attractive
research topic for the last two decades since it is an essential problem for verifica-
tion of safety-critical CPS. In this context, numerous techniques and tools have
been proposed. Reachability analysis using zonotopes [2, 21] and support func-
tions [19, 22] are efficient approaches when dealing with linear, continuous and
hybrid systems. For nonlinear, continuous and hybrid systems, dReal [25] using
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δ−reachability analysis and Flow∗ [10] using Taylor model are well-known and
efficient approaches. However, these over-approximation based approaches can
only conduct a reachability analysis for small and medium scale systems. To deal
with large-scale systems, other simulation-based methods have been proposed
recently. For linear cases, the simulation-equivalent reachability analysis [5, 16]
utilizing the generalized star-set as the state-set representation has shown an
impressive result by successfully dealing with linear systems up to 10, 000 state
variables. In this approach, the discrete simulation-equivalent reachable set of a
linear ODE system can be computed efficiently using standard ODE solvers by
taking advantage of the superposition property. Another technique applies order-
reduction abstraction [23,33,34] in which a large system can be abstracted to a
smaller system with bounded error. For nonlinear cases, C2E2 [15, 18] utilizing
simulation has shown significant improvement on time performance and scala-
bility in comparison with other methods. Recently, a new numerical verification
approach has been proposed to verify/falsify the safety properties of CPS with
physical dynamics described by partial differential equations [31,35].

Although many methods have been developed for reachability analysis of
CPS, most of them mentioned above focus on CPS with ODE dynamics. There
is a lack of methodology in analyzing systems with high-index DAE dynamics. It
is because the reachability analysis for DAE systems is more complex than ODE
systems, especially for high-index DAEs because they contain both a differential
part (i.e., ODE) and algebraic constraints (AC). It should be emphasized that
there are efficient reachability analysis approaches for DAE systems with index-
1 [1, 11, 13, 28]. Dealing with index-1 DAE is slightly different from coping with
pure ODE because, with a consistent initial condition, a semi-explicit index-1
DAE can be converted to an ODE. As CPS involving high-index DAE dynamics
appear extensively in engineering and science such as multi-body mechanics,
electrical circuit design, heat and gas transfer, chemical process, atmospheric
physics, thermodynamic systems, and water distribution network [8, 17], there
is an urgent need for novel reachability analysis methods and tools that can
either verify or falsify the safety properties of such CPS. Solving this challenging
problem is the main contribution of this research.

The novelty of our approach comes from its objective in dealing with high-
index DAE which is a popular class of dynamics that has not been addressed
in the existing literature. In this paper, we investigate the reachability analysis
for large linear DAE systems with the index up to 3, which appear widely in
practice. There are a variety of definitions for the index of a linear DAE. However,
throughout the paper, we use the concept of tractability index proposed in [26] to
determine the index of a linear DAE system. Our approach consists of three main
steps (a) decoupling and consistency checking, (b) reachable set computation,
and (c) safety verification or falsification; that can be summarized as follows.

The first step is to use the Marz decoupling method [7,26] to decouple a high-
index DAE into one ODE subsystem and one or several algebraic constraint (AC)
subsystems. The core step in decoupling is constructing a set of admissible pro-
jectors which has not previously been discussed deeply in the existing literature.
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In this paper, we propose a novel algorithm that can construct such admissible
projectors for a linear DAE system with the index up to 3 (most of DAE systems
in practice have index from 1 to 3). Additionally, we define a consistent space
for the DAE because, unlike ODE reachability analysis where the initial set of
states can be freely defined by a user, to guarantee a numerical solution for the
DAE system, the initial state and inputs of such DAE system must be consistent
and satisfy certain constraints. It is important to emphasize that the decoupling
and consistency checking methods used in our approach can be combined with
existing over-approximation reachability analysis methods [2,19] to compute the
over-approximated reachable sets for high-index, linear DAE systems with small
to medium dimensions.

The second step in our approach is reachable set computation. Since our main
objective is to verify or falsify large linear DAEs, we extend ODE simulation-
based reachability analysis to DAEs. In particular, we modify the generalized
star-set proposed in [5] to enhance the efficiency in checking the initial condition
consistency and safety for DAEs. From a consistent initial set of states and
inputs, the reachable set of a DAE system can be constructed by combining the
reachable sets of its subsystems. It is also worth pointing out that the piecewise
constant inputs assumption for ODE with inputs used in [5] may lead a DAE
system to impulsive behavior. Therefore, in this paper, we assume the inputs
applied to the system are smooth functions. Such the inputs can be obtained by
smoothing piecewise constant inputs with filters.

The last step in our approach is to verify or falsify the safety properties of
the DAE system using the constructed reachable set computed in the second
step. In this paper, we consider linear safety specifications. We are interested in
checking the safety of the system in a specific direction defined using a direc-
tional matrix. Using the modified star-set and the directional matrix, checking
the safety property can be solved efficiently as a low-dimensional feasibility lin-
ear programming problem. In the case of violation, our approach generates a
counterexample trace that falsifies the system safety.

Contribution. The main contributions of the paper are as follows.

1. A novel reachability analysis approach for high-index linear DAE systems
developed based on the effective combination of a decoupling method and a
reachable set computation using star-set. To the best of our knowledge, this
problem has not been addressed in the existing literature.

2. An end-to-end design and implementation of the approach in a Python tool-
box, called Daev, which is publicly available for verifying high-index linear
DAE systems.

3. An extensive evaluation that demonstrates the capability of our approach in
verifying/falsifying a wide range of practical, high-index linear DAE systems
where the number of state variables varies from several to thousands.

We note that our reachability analysis approach for high-index DAEs based on
combining the decoupling technique and existing ODE reachability analysis is
extensible and generic. Instead of using star-set, one can use the decoupling
technique in a combination of other state-of-the-art ODE reachability analysis
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tool like SpaceEx and Flow* for specific application purposes. We choose star-
set to handle high-index large linear DAEs because of its scalability advantage
compared to other ODE reachability analysis tools.

Outline of paper. The remainder of the paper is structured as follows. Sec-
tion 2 reviews the relevant definitions of a high-index large linear DAE system,
and the concept of a modified star-set used to represent its reachable set. Section
3 describes our decoupling approach that can effectively decouple a high-index
DAE system into ODE and AC subsystems. Section 4 discusses the consistent
condition for the initial states and inputs of a DAE system. Section 5 presents
the core algorithms that can efficiently compute reachable set and perform a
safety verification/falsification for a high-index large linear DAE system. Sec-
tions 6 describes the verification results of our approach through a collection of
high-index linear DAE system benchmarks. Section 7 concludes the paper and
presents future research directions for the proposed work.

2 Preliminaries

2.1 Linear DAE system

We are interested in the reachability analysis of a high-index large linear DAE
system described as follows:

∆ : Eẋ(t) = Ax(t) +Bu(t), (1)
where x(t) ∈ Rn is the state vector of the system; E,A ∈ Rn×n, B ∈ Rn×m
are the system’s matrices in which E is singular ; and u(t) ∈ Rm is the input
of the system. Let In be the n-dimensional identity matrix. The regularity, the
tractability index, the admissible projectors, the fixed-step bounded-time simu-
lation, and the bounded-time simulation-equivalent reachable set of the system
are defined below.

Definition 1 (Regularity [12]). The pair (E,A) is said to be regular if det(sE−
A) is not identically zero.

Remark 1. For any specified initial conditions, the regularity of the pair (E,A)
guarantees the existence and uniqueness of a solution of the system (1).

Definition 2 (Tractability index [26]). Assume that the DAE system (1) is
solvable, i.e., the matrix pair (E,A) is regular. A matrix chain is defined by:

E0 = E, A0 = A,

Ej+1 = Ej −AjQj , Aj+1 = AjPj , for j ≥ 0,
(2)

where Qj are projectors onto Ker(Ej), i.e., EjQj = 0, Q2
j = Qj, and Pj =

In − Qj. Then, there exists an index µ such that Eµ is nonsingular and all Ej
are singular for 0 ≤ j < µ−1. It is said that the system (1) has tractability index-
µ. In the rest of the paper, we use the term “index” to state for the “tractability
index” of the system.

Definition 3 (Admissible projectors [26]). Given a DAE with tractability
index-µ, the projectors Q0, Q1, · · · , Qµ−1 in Definition 2 are called admissible if
and only if they satisfy the following property: ∀j > i, QjQi = 0.



Reachability Analysis for High-Index Linear Differential Algebraic Equations 5

Definition 4 (Fixed-step, bounded-time simulation). Given consistent ini-
tial state x0 and input u(t), a time bound T , and a time step h, the finite se-
quence:

ρ(x0, u(t), h, T = Nh) = x0
u(t)−−−−→

0≤t<h
x1

u(t)−−−−−→
h≤t<2h

x2 · · ·
u(t)−−−−−−−−−−→

(N−1)h≤t<Nh
xN ,

is a (x0, u(t), h, T )-simulation of the DAE system (1) if and only if for all 0 ≤
i ≤ N − 1, xi+1 is the state of the system trajectory starting from xi when
provided with input function u(t) for ih ≤ t < (i + 1)h. If there is no input,
u(t) = 0.

The consistent condition for the initial state x0 and input u(t) will be dis-
cussed in detail in Section 4. From the fixed-step, bounded-time simulation of a
DAE system, we define the following bounded-time, simulation-equivalent reach-
able set of the DAE system.

Definition 5 (Bounded-time, simulation-equivalent reachable set). Given
sets of consistent initial state X0 and input U , the bounded-time, simulation-
equivalent reachable set R[0,T ](∆) of the system (1) is the set of all states that
can be encountered by any (x0, u(t), h, T )-simulation starting from any x0 ∈ X0

and input u(t) ∈ U .

Let Unsafe(∆) , Gx ≤ f be the unsafe set of the DAE system (1) in which
x ∈ Rn is the state vector of the system, G ∈ Rk×n is the unsafe matrix and
f ∈ Rk is the unsafe vector. Given sets of consistent initial state X0 and input
U , the simulation-based safety verification and falsification problem is defined
in the following.

Definition 6 (Simulation-based safety verification and falsification).
The DAE system (1) is said to be “simulationally safe” up to time T if and
only if its simulation-equivalent reachable set, R[0,T ](∆), and the unsafe set,
Unsafe(∆), are disjoint, i.e., R[0,T ](∆)∩Unsafe(∆) = ∅. Otherwise, it is sim-
ulationally unsafe.

The DAE system is said to be “simulationally falsifiable” if and only if it
is simulationally unsafe and there exists a simulation, (x0, u(t), h, T ), that leads
the initial state, x0, of the system to an unsafe state, xunsafe ∈ Unsafe(∆).

The main objective of the paper is to compute the simulation-equivalent
reachable set, R[0,T ](∆), of the DAE system and use it to verify or falsify the
safety property of the system. In the rest of the paper, we use the term reachable
set to stand for simulation-equivalent reachable set. Next, we define a modified
star set which is used as the state-set representation of the DAE system.

2.2 Modified star set

In our approach, we use a modified star set to represent the reachable set of the
DAE system. The modified star set is slightly different from the generalized star
set [5] because it does not have a center vector and is only defined on a star’s
n× k basis matrix.
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Definition 7 (Modified star set). A modified star set (or simply star) Θ is
a tuple 〈V, P 〉 where V = [v1, v2, · · · , vk] ∈ Rn×k is a star basis matrix and P is
a linear predicate. The set of states represented by the star is given by:

JΘK = {x | x = Σk
i=1(αivi) = V × α, P (α) , Cα ≤ d}, (3)

where α = [α1, α2, · · · , αk]T, C ∈ Rp×k, d ∈ Rp and p is the number of linear
constraints.

The benefit of the modified star set come from its form given as a matrix-
vector product which is convenient (in next sections) for checking initial condition
consistency and safety properties. In the rest of the paper, we will refer to both
the tuple Θ and the set of states JΘK as Θ.

To construct the reachable set of the DAE system (1), we decouple the system
into µ + 1 subsystems where µ is the index of the DAE system. The underlin-
ing technique used in our approach is the Marz decoupling method utilizing
admissible projectors which is presented in detail in the following section.

3 Decoupling

In this section, we discuss how to decouple a high-index DAE system into one
ODE subsystem and one or several AC subsystems using the matrix chain and
admissible projectors defined in the previous section with noticing that the de-
coupled system and the original one are equivalent, i.e., they have the same
solutions. Since we are particularly interested in DAE systems with index up to
3 which happen in most of DAE systems in practice, the proofs of decoupling
process for index-1, -2, and -3 are given in detail in the extended version of this
paper [32].3 A generalization of decoupling for a DAE with arbitrary index is
presented in [26]. As the construction of admissible projectors used in decoupling
has not been discussed clearly in existing literature, in this section, we propose
a method and an algorithm to solve this problem.

Lemma 1 (Index-1 DAE decoupling [7, 26]). An index-1 DAE system de-
scribed by (1) can be decoupled using the matrix chain defined by Equation (2)
as follows:

∆1 : ẋ1(t) = N1x1(t) +M1u(t), ODE subsystem,

∆2 : x2(t) = N2x1(t) +M2u(t), AC subsystem,

x(t) = x1(t) + x2(t),

x1(t) = P0x(t), N1 = P0E
−1
1 A0, M1 = P0E

−1
1 B,

x2(t) = Q0x(t), N2 = Q0E
−1
1 A0, M2 = Q0E

−1
1 B.

Proof is given in the appendix of [32].
3 Available online: http://www.taylortjohnson.com/research/tran2019formats_

extended.pdf

http://www.taylortjohnson.com/research/tran2019formats_extended.pdf
http://www.taylortjohnson.com/research/tran2019formats_extended.pdf
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Lemma 2 (Index-2 DAE decoupling [7, 26]). An index-2 DAE system de-
scribed by (1) can be decoupled into a decoupled system using the matrix chain
defined by Equation (2) and the admissible projectors in Definition 3 as follows:

∆1 : ẋ1(t) = N1x1(t) +M1u(t), ODE subsystem,

∆2 : x2(t) = N2x1(t) +M2u(t), AC subsystem 1,

∆3 : x3(t) = N3x1(t) +M3u(t) + L3ẋ2(t), AC subsystem 2,

x(t) = x1(t) + x2(t) + x3(t),

x1(t) = P0P1x(t), N1 = P0P1E
−1
2 A2, M1 = P0P1E

−1
2 B,

x2(t) = P0Q1x(t), N2 = P0Q1E
−1
2 A2, M2 = P0Q1E

−1
2 B,

x3(t) = Q0x(t), N3 = Q0P1E
−1
2 A2, M3 = Q0P1E

−1
2 B, L3 = Q0Q1.

Proof is given in the appendix of [32].

Lemma 3 (Index-3 DAE decoupling [7, 26]). An index-3 DAE system de-
scribed by (1) can be decoupled into a decoupled system using the matrix chain
defined by Equation (2) and the admissible projectors in Definition 3 as follows:

∆1 : ẋ1(t) = N1x1(t) +M1u(t), ODE subsystem,

∆2 : x2(t) = N2x1(t) +M2u(t), AC subsystem 1,

∆3 : x3(t) = N3x1(t) +M3u(t) + L3ẋ2(t), AC subsystem 2

∆4 : x4(t) = N4x1(t) +M4u(t) + L4ẋ3(t) + Z4ẋ2(t), AC subsystem 3

x(t) = x1(t) + x2(t) + x3(t) + x4(t), where:

x1(t) = P0P1P2x(t), N1 = P0P1P2E
−1
3 A3, M1 = P0P1P2E

−1
3 B,

x2(t) = P0P1Q2x(t), N2 = P0P1Q2E
−1
3 A3, M2 = P0P1Q2E

−1
3 B,

x3(t) = P0Q1x(t), N3 = P0Q1P2E
−1
3 A3, M3 = P0Q1P2E

−1
3 B, L3 = P0Q1Q2,

x4(t) = Q0x(t), N4 = Q0P1P2E
−1
3 A3, M4 = Q0P1P2E

−1
3 B, L4 = Q0Q1,

Z4 = Q0P1Q2.
Proof is given in the appendix of [32].

It should be noted that the AC subsystems ∆3 and ∆4 in Lemma 2 and
3 are called algebraic constraints, though they contain the derivatives of x2(t)
and x3(t). This is because the explicit forms of these algebraic constraints can
be obtained if we further extend the derivatives using the corresponding ODE
subsystems. In addition, one can see that for a DAE system with index-2 or
-3, a set of admissible projectors need to be constructed for decoupling. In the
following, we give a Proposition and Lemmas that are used to construct such
admissible projectors.

Proposition 1 (Orthogonal projector on a subspace). Given a real matrix
Z ∈ Rn×n such that rank(Z) = r < n, the Singular-Value Decomposition (SVD)
of Z has the form:

Z = [L1 L2]

Sr×r 0

0 0

KT
1

KT
2

 , (4)
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where L1,K1 ∈ Rn×r and L2,K2 ∈ Rn×n−r. Then, the matrix Q = K2K
T
2 is an

orthogonal projector on Ker(Z), i.e., ZQ = 0, Q = QT and Q2 = Q.

Proof is given in the appendix of [32].
For an index-2 or -3 DAE system, using Proposition 1, we can construct a set

of projectors of the matrix chain defined in Equation (2). However, these pro-
jectors are not yet admissible, because QjQi 6= 0, j > i. Instead, the admissible
projectors can be constructed based on these inadmissible projectors using the
following Lemmas.

Lemma 4 (Admissible projectors for an index-2 DAE system). Given
an index-2 DAE system described by (1), let Q0 and Q1 respectively be the or-
thogonal projectors of E0 and E1 of the matrix chain defined in Equation (2).
The following projectors Q∗0 and Q∗1 are admissible: Q∗0 = Q0, Q

∗
1 = −Q1E

−1
2 A1.

Proof is given in the appendix of [32].

Lemma 5 (Admissible projectors for an index-3 DAE system). Given
an index-3 DAE system described by (1), let Q0, Q1 and Q2 respectively be the
orthogonal projectors of E0, E1 and E2 of the matrix chain defined in Equation
(2). We define the following projectors and the corresponding new matrices for
the matrix chain as:

Q′2 = −Q2E
−1
3 A2, Q

′
1 = −Q1P

′
2E
−1
3 A1, E

′
2 = E1 −A1Q

′
1, A

′
2 = A1P

′
1

where P ′2 = In − Q′2 and P ′1 = In − Q′1. Let Q′′2 be the orthogonal projector
on E′2 and E′′3 = E′2 − A′2Q′′2 , then the following projectors Q∗0, Q

∗
1 and Q∗2 are

admissible: Q∗0 = Q0, Q
∗
1 = Q′1, Q

∗
2 = −Q′′2(E′′3 )−1A′2.

Proof is given in the appendix of [32].
Lemmas 4 and 5 are the constructions of admissible projectors for index-2

and -3 DAE systems. The details of the admissible projectors construction are
summarized in the appendix [32]. Next, based on the decoupled DAE system, we
discuss the consistent condition of the system and analyze the system behavior
under the effect of input functions.

4 Consistency

In this section, we discuss the consistent condition for a DAE system. Using
the decoupled DAE system, the consistent condition for the initial state and
inputs is derived. Additionally, the piecewise constant assumption on the inputs
used in [5] for ODE systems may lead to impulsive behavior in high-index DAE
systems. To avoid this, we limit our problem to smooth and specific-user-defined
inputs. As a result, DAE systems with inputs can be converted to autonomous
DAE systems, where consistent spaces for the initial states and inputs can be
conveniently defined and checked. Furthermore, the reachable set computation
is executed efficiently using a decoupled autonomous DAE system.

Using Lemmas 1, 2, and 3, to guarantee a solution for the DAE system, the
initial states and inputs must satisfy the following conditions:
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Index-1 DAE : x2(0) = N2x1(0) +M2u(0),

Index-2 DAE : x2(0) = N2x1(0) +M2u(0),

x3(0) = N3x1(0) +M3u(0) + L3ẋ2(0),

Index-3 DAE : x2(0) = N2x1(0) +M2u(0),

x3(0) = N3x1(0) +M3u(0) + L3ẋ2(0),

x4(0) = N4x1(0) +M4u(0) + L4ẋ3(0) + Z4ẋ2(0).

(5)

Assuming that the consistent condition is satisfied, Lemmas 2 and 3 indicate
the solution of the system involves the derivatives of the input functions ẋ2(t) =
N2ẋ1(t) + M2u̇(t) and ẋ3(t) = N3ẋ1(t) + M4u̇(t) + L3[N2ẍ1(t) + M2ü(t)]. In
cases where we apply piecewise constant inputs to a high-index DAE system,
the impulsive behavior may appear in the system at an exact discrete time point
tk. For example, let u(t) be a step function in [tk, tk+1), then u̇(tk) = δ(tk),
where δ(tk) is the Dirac function describing an impulse. To avoid such impulsive
behavior and do reachability analysis for high-index DAE systems, we limit our
approach to smooth inputs which are governed by the following ODE: u̇(t) =
Auu(t), u(0) = u0 ∈ U0, where Au ∈ Rm×m is the user-defined input matrix,
and U0 is the set of initial inputs.

Remark 2. By introducing the input matrix Au, we limit the safety verification
and falsification of a high-index DAE system to a class of specific-user-defined
inputs. If Au = 0, then the input set is a set of constant inputs. We note that
designing the input matrix Au can be seen as the last step in designing a con-
troller for a DAE system to eliminate the impulsive behavior of the closed-loop
system which is a fundamental problem in DAE control system [14].

Given a user-defined input matrix Au, a DAE system described by (1) can
be converted to an equivalent autonomous DAE system of the following form:

Ē ˙̄x(t) = Āx̄(t), (6)

where x̄(t) =

x(t)

u(t)

 ∈ Rn+m, Ē =

E 0

0 Im

 , Ā =

A B

0 Au

 ∈ R(n+m)×(n+m)

and the state of the original DAE is: x(t) = [In 0]x̄(t).
Similar to the original DAE system, the autonomous DAE system (6) can

be decoupled to form one autonomous ODE subsystem and one or several AC
subsystems. It should be noted that the autonomous DAE system has the same
index as the original one.

We have discussed the conversion of a DAE system with user-defined input
to an autonomous DAE system. Next, we derive the consistent space for the
initial condition of an autonomous DAE system. All previous results apply to
these systems given that u(t) = 0.

Definition 8 (Consistent Space for an autonomous DAE system). Con-
sider an autonomous DAE system (∆) defined in Equation (1) by letting u(t) =
0. From this, we define in the following a “consistent matrix” Γ as:
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Index-1 ∆ : Γ = Q0 −N2P0, (Q0, P0, N2)are defined in Lemma 1,

Index-2 ∆ : Γ =

 P0Q1 −N2P0P1

Q0 − (N3 + L3N2N1)P0P1

 ,
(Qi, Pi, Ni, Li)are defined in Lemma 2,

Index-3 ∆ : Γ =


P0P1Q2 −N2P0P1P2

P0Q1 − (N3 + L3N2N1)P0P1P2

Q0 − [N4 + L4(N3N1 + L3N2N
2
1 ) + Z4N2N1]P0P1P2

 ,
(Qi, Pi, Ni, Li, Z4)are defined in Lemma 3,

then, Ker(Γ ) is the consistent space of the system ∆, where Ker(Γ ) denotes the
null space of the matrix Γ .

An initial state x0 is consistent if it is in the consistent space, i.e., Γx0 = 0.
The consistent matrix and consistent space is introduced because it is useful
and convenient for checking the consistency of an initial set of states represented
using a star set. For example, assume that the initial set of states is defined by
Θ(0) = 〈V (0), P 〉, then this set is consistent for all α satisfying the predicate
P if ΓV (0) = 0. This means that we require consistency for all points in the
initial set. With a consistent initial set of states, we investigate the reachable set
computation and safety verification/falsification of an autonomous DAE system
in the next section.

5 Reachability Analysis

5.1 Reachable Set Computation

The reachable set of an autonomous DAE system is constructed by combining
the reachable set of all of its decoupled subsystems. The reachable set of all AC
subsystems can be derived from the reachable set of the ODE subsystem, which
can be computed efficiently using existing ODE solvers. We first discuss the
reachable set computation of the ODE subsystem by exploiting its superposition
property. Then, the reachable set of the autonomous DAE system is constructed
conveniently using only matrix addition and multiplication.

Let Θ(0) = 〈V (0), P 〉 be the initial set of states of an autonomous DAE
system defined in (1) by letting u(t) = 0. Assume that the initial set of states,
X(0), satisfies the consistent condition. After decoupling, the initial set of states
of the ODE subsystem Θ1(0) is obtained as follows: Θ1(0) = 〈V1(0), P 〉 where

V1(0) = (
∏µ−1
i=0 P0 · · ·Pµ−1)V (0) = [v11(0) v12(0) · · · v1k(0)], µ is the index of

the DAE system, and Pi, (i = 0, · · · , µ − 1), are defined in Lemma 1 or 2 or 3
corresponding to the index µ.

Then, for any x1(0) ∈ Θ1(0), we have x1(0) = Σk
i=1αiv

1
i (0). The solution of

the ODE subsystem at time t is given by: x1(t) = Σk
i=1αiv

1
i (t) = V1(t)α, where

v1i (t) = eN1tv1i (0) and V1(t) = [v11(t) v12(t) · · · v1k(t)]. Therefore, the reachable set
of the ODE subsystem at anytime t is also a star set defined by Θ1(t) = V1(t)α.
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Using existing ode solvers, we can construct the matrix V1(t) at anytime t. From
Θ1(t), the reachable set of the autonomous DAE system can be obtained using
the following Lemma.

Lemma 6 (Reachable Set Construction). Given an autonomous DAE sys-
tem defined in Equation (1) where u(t) = 0 and a consistent initial set of states
Θ(0) = 〈V (0), P 〉, let Θ1(t) = 〈V1(t), P 〉 be the reachable set at time t of the cor-
responding ODE subsystem after decoupling. Then, the reachable set Θ(t) at time
t of the system is given by Θ(t) = 〈V (t) = ΨV1(t), P 〉, where Ψ is a “reachable
set projector” defined below.

Index-1 : Ψ = (In +N2), N2 is defined in Lemma 1,

Index-2 : Ψ = (In +N2 +N3 + L3N2N1),

(Ni=1,2,3, L3) are defined in Lemma 2,

Index-3 : Ψ = (In +N2 +N3 +N4 + L3N2N1+

L4N3N1 + L4L3N2N
2
1 + Z4N2N1),

(Ni=1,2,3,4, Li=3,4, Z4) are defined in Lemma 3.

(7)

Proof is given in the appendix of [32].
The reachable set construction of an autonomous DAE system is summarized

in the appendix [32]. Next, from the constructed reachable set, we discuss how
to verify or falsify the safety property.

5.2 Safety Verification and Falsification

By utilizing the star set to represent the reachable set of a DAE system, the
safety verification and falsification problem is solved in the following manner.
Let Unsafe(∆) , Gx ≤ f be the unsafe set of an autonomous DAE system and
assume that we want to check the safety of the system at the time step tj = jh.

This is equivalent to checking GV (jh)α ≤ f subject to P (α) , Cα ≤ d, where
V (jh) is the basic matrix of the reachable set Θ(jh) of the system at time jh
computed using the reachable set construction algorithm in the appendix of [32]
Combining these constraints, the problem changes to checking the feasibility of
the following linear predicate: P̄ , Ḡα ≤ f̄ , where Ḡ = [(GV (jh))T CT ]T

and f̄ = [fT dT ]T . This can be solved efficiently using existing linear program-
ming algorithms. The verification and falsification algorithm in the appendix
of [32] summarizes the steps of verifying or falsifying the safety property of an
autonomous DAE system. In the next section, we evaluate our approach using
a set of DAE benchmarks with several thousand states.

6 Experimental Results

In this section, we first demonstrate the effectiveness and scalability of our ap-
proach via the verification results for several DAE benchmarks [29]. Then, we
analyze the time performance of our approach using the index-2, two-dimensional
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semi-discretized Stokes Equation benchmark [27]. It is worthy of noting that our
reachability analysis approach for high-index DAEs is extensible and generic,
in the sense that we can combine a decoupling method with other ODE reach-
ability analysis tools such as SpaceEx and Flow*. The verification results of
all benchmarks using such combinations with SpaceEx are presented in the ap-
pendix [32] , which demonstrates the limitations in both timing and scalability
performances. Our approach based on the combination of a decoupling method
and a reachable set computation using star-set is implemented in a tool called
Daev4 using Python and its standard packages numpy, scipy, and mathplotlib.
All experiments were done on a computer with the following configuration: Intel
Core i7-6700 CPU @ 3.4GHz 8 Processor, 62.8 GiB Memory, 64-bit Ubuntu
16.04.3 LTS OS.

6.1 Scalability Performance

Table 1 presents the verification results for all high-index DAE system bench-
marks using Daev. From the table, we can see that Daev is scalable in ver-
ifying large DAE systems with thousands of state variables where the over-
approximation approach is not applicable. Moreover, our approach can produce
an unsafe trace in the case that a DAE system violates its safety property. An ex-
ample of unsafe traces of the index-2, interconnected rotating masses system [30]
is shown in the appendix [32]. Therefore, our approach is practically useful for
falsification of large, linear DAE systems.

6.2 Timing Performance

Next, we investigate the time performance of our approach through the reacha-
bility analysis of the index-2, two-dimensional semi-discretized Stokes Equation
benchmark.

Example 1 (Semi-discretized Stokes Equation [27]). This example studies the
safety of a Stokes equation that describes the flow of an incompressible fluid
in a two-dimensional spatial domain Ω. The mathematical description of the
Stokes-equation is given in the appendix [32] . An index-2 DAE system is de-
rived from the Stokes-equation by discretizing the domain Ω by a number of
uniform square cells. Let n be the number of discretized segments of the domain
on the x- or y-axes, then the dimension of the DAE system is 3n2+2n. Addition-
ally, we are interested in the velocity along the x- and y- axes, vcx(t) and vcy(t),
of the fluid in the central cell of the domain Ω. The unsafe set of the system
is defined: Unsafe , −vcx(t) − vcy(t) ≤ 0.04. By increasing the number of cells
used to discretize the domain Ω, we can produce an index-2 DAE system with
arbitrarily large dimension. We evaluate the time performance of our approach
via three scenarios. First, we discuss how the times for decoupling, reachable
set computation, and safety checking are affected by changes in the system di-
mension. Second, we analyze the reachable set computation time along with the

4 https://github.com/verivital/daev/releases/tag/formats2019

https://github.com/verivital/daev/releases/tag/formats2019
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Table 1. Verification results for all benchmarks using Daev.

Benchmarks n Index Unsafe Set Result V-T(s)

RL network [24] 3 2 x1 ≤ −0.2 ∧ x2 ≤ −0.1 unsafe 0.184

x1 ≥ 0.2 safe 0.44

RLC circuit [12] 4 1 x1 + x3 ≥ 0.2 unsafe 0.224

x4 ≤ −0.3 safe 1.37

Interconnected ro-
tating mass [30]

4 2 x3 ≤ −0.9 unsafe 0.37

x4 ≤ −1.0 safe 0.114

Generator [20] 9 3 x9 ≥ 0.01 unsafe 0.4

x1 ≥ 1.0 safe 0.684

Damped-mass
spring [27]

11 3 x3 ≤ 1 ∧ x8 ≤ 1.5 safe 1.06

x8 ≤ −0.2 unsafe 1.08

PEEC [9] 480 2 x478 ≥ 0.05 safe 28.84

x478 ≥ 0.01 unsafe 28.25

MNA-1 [9] 578 2 x1 ≥ −0.001 safe 192.7

x1 ≥ −0.0015 unsafe 202.6

MNA-4 [9] 980 3 x2 ≥ 0.0005 safe 1858.4

x2 ≥ 0.0002 unsafe 1836.04

Stokes-equation [27] 4880 2 vcx + vcy ≤ −0.04 unsafe 3502.3

vcx ≥ 0.2 safe 3532.3

width of the basic matrix of the initial set V (0), i.e., the number of the initial
basic vectors. Finally, because the reachable set of the system is constructed
from the reachable set of its corresponding ODE subsystem, which is computed
using ODE solvers as shown in the reachable set construction algorithm in the
appendix [32] , we investigate the time performance of reachable set computa-
tion using different ODE solving schemes. Table 2 presents the verification time,
V-T, for the Stokes-equation benchmark with different dimensions. The verifica-
tion time is broken into three components measured in seconds: decoupling time
D-T, reachable set computation time RSC-T, and checking safety time CS-T.
Table 2 shows the decoupling and reachable set computation times dominate the
time for verification process. In addition, these times increase as the system size
grows. The time for checking safety is almost unchanged and very small. This
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Table 2. Verification time of Stokes-equation with different dimensions n.

n 86 321 706 1241 1926 2761

D-T 0.012s 0.63s 6.32s 40.38s 155.32s 466.38s

RSC-T 0.019s 0.37s 2.98s 19.29s 68.15s 200.89s

CS-T 0.0017s 0.0014s 0.0015s 0.0017s 0.0018s 0.002s

V-T 0.0327s 1.0014s 9.3015s 59.6717s 223.4718s 667.272s

Table 3. Reachable set computation time of Stokes-equation of dimensions
n = 321 with different number of initial basic vectors k.

k 2 4 6 8 10 12 14

RSC-T 1.9s 3.41s 5.01s 6.71s 8.3s 9.9s 11.44s

happens because the size of the feasibility problem P̄ defined in the verifica-
tion/falsification algorithm in the appendix [32] is unchanged and usually small
when we only check the safety in some specific directions defined by the unsafe
matrix G in the algorithm.

Since the reachable set the Stokes-equation benchmark is constructed by
simulating its corresponding ODE subsystem with each initial vector of its initial
basic matrix, the time for computing the reachable set of the Stokes-equation
depends linearly on the number of the initial basic vectors k. Table 3 shows the
reachable set computation time, RSC−T , for the Stokes-equation of dimension
n = 321 versus the number of the initial basic vectors k.

Our approach relies on existing ODE solvers. Therefore, it is interesting to
consider how the reachable set computation time performs with different existing
ODE solving schemes supported by the scipy package such as vode, zvode, lsoda,
dopri5 and dop853. All solvers are used with the absolute tolerance atol = 1e-12
and the relative tolerance rtol = 1e-08. Figure 1 illustrates the time performance
of different schemes and indicates that the vode, dopri5, and dop853 are fast
schemes that should be used for large DAE systems. In addition, we should
avoid using the lsoda and zvode schemes for large DAE systems due to theirs
slow performance.

7 Conclusion and Future Work

We have studied a simulation-based reachability analysis for high-index, linear
DAE systems. The experiential results show that our approach can deal with
DAE systems with up to thousands of state variables. Therefore, it is useful
and applicable to verify or falsify safety-critical CPS involving DAE dynamics.
Additionally, the decoupling and the consistency checking techniques used in our
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Fig. 1. Reachable set computation time of Stokes-equation using different ode solvers

approach can be used as a transformation pass for existing over-approximation
techniques [2, 19] to verify the safety of DAE systems with small and medium
dimension.

The reachability analysis for DAE systems with millions of dimensions re-
mains challenging, although recent symbolic state-space representations, such as
star sets, that allow for analyzing very large ODEs may also prove pivotal for
DAEs [6]. The verification time of our approach depends mostly on the decou-
pling and the reachable set computation times. Therefore, to enhance the time
performance and the scalability of our approach to make it work for million-
dimensional DAE systems, both decoupling and reachable set computation tech-
niques need to be improved. A promising application that inspires seeking a such
scalable approach is verification and falsification of very large circuits, such as
those that may arise in analog/mixed signal (AMS) designs, which are described
as high-index DAEs. Transformations from standard circuit languages such as
Verilog-AMS or VHDL-AMS to representations as hybrid automata may enable
such analyses [3, 4].
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