
Partial Differential Equation Driven Dynamic Graph
Networks for Predicting Stream Water Temperature

Tianshu Bao1, Xiaowei Jia2, Jacob Zwart3, Jeffrey Sadler3, Alison Appling3, Samantha Oliver3, and Taylor T. Johnson1
1Vanderbilt University, 2University of Pittsburgh, 3U.S. Geological Survey

1{tianshu.bao, taylor.johnson}@vanderbilt.edu, 2xiaowei@pitt.edu, 3{jzwart, jsadler, aappling, soliver}@usgs.gov

Abstract—This paper presents a physics-guided machine learn-
ing approach that incorporates partial differential equations
(PDEs) in a graph neural network model to improve the predic-
tion of water temperature in river networks. The standard graph
neural network model often uses pre-defined edge weights based
on distance or similarity measures. Such static graph structure
can be limited in capturing multiple processes in a physical
system that interact and evolve over time. The limitation to
represent underlying physical processes can severely affect the
performance of the predictive model, especially when we have
access to limited training data. To better capture the dynamic
interactions among multiple segments in a river network, we built
a dynamic graph model, where the graph structure is driven by
the PDE that describes underlying physical processes. We further
combine the dynamic graph structure and the recurrent layers
to model temporal dependencies and improve the prediction. We
demonstrate the effectiveness of the proposed method in a sub-
network of the Delaware River Basin. In particular, we show
that the proposed method outperforms existing physics-based
and machine learning models in temperature prediction using
sparse observation data for training. The proposed method has
also been shown to produce better performance when generalized
to different seasons.

I. INTRODUCTION

Water temperature prediction in river networks is critical
for monitoring aquatic ecosystems by providing important
information regarding the habitat for aquatic life and aquatic
biogeochemical cycling [1], [2]. Effective temperature predic-
tions are also essential for water management decisions. For
example, accurate prediction of water temperature can help
water managers optimize the water release from reservoirs to
maintain the flow and temperature regimes required for quality
downstream habitat.

A river network can be considered as a physical system that
has multiple interacting processes. In this problem, multiple
river segments are connected to each other, and they can show
different thermodynamic patterns driven by differences in
catchment characteristics (e.g. slope, soil characteristics) and
meteorological drivers (e.g. temperature, precipitation). These
segments also frequently interact with each other through the
water advected from upstream to downstream segments. Rivers
are essentially fluid from a physical perspective, with their
spatial and temporal patterns described by partial differential
equations (PDEs) that govern fluid dynamics. For example, tra-
ditional fluid models have used the Navier–Stokes equation [3]
for simulating fluid dynamics in many applications including
aquatic science, hydraulic modeling, weather and climate

modeling, ocean currents, and aerodynamics. When modeling
temperature dynamics in river networks, these PDEs capture
not only the temporal thermodynamics but also the spatial heat
diffusion and convection from connected river segments [4].
Furthermore, these PDEs, along with other known physical
relationships, have been used to build more complex physics-
based models [5], [6] to simulate multiple interacting processes
on different variables in a system. However, these equations
and physics-based models have limits in their predictions due
to approximations and parameterizations used to represent
underlying processes.

Recent advances in machine learning (ML), given their great
success in commercial applications, have provided unrealized
potential for modeling complex data patterns in scientific prob-
lems. The power of these models come from their capacity to
extract complex nonlinear patterns from observation data and
naturally incorporate spatial and temporal data dependencies.
For example, recurrent neural network (RNN) models, which
take account of temporal dependencies, have shown extensive
applicability in speech recognition and machine translation [7],
[8]. Convolutional neural network (CNN)-based approaches
have shown tremendous success in learning spatial patterns in
many computer vision applications [9]–[11]. Recently, graph
neural network models, e.g., graph convolutional networks
(GCNs), have shown a great promise for modeling inter-
actions and similarities amongst multiple objects [12]–[15]
and also have shown encouraging results for studying river
networks [16]–[18].

However, there are several major challenges faced by these
existing ML methods when they are directly applied to sci-
entific problems. First, the data available for many scientific
problems is far smaller than what is needed for effectively
training advanced ML models. In a river network, there are
often only a handful of river segments in a network that are
monitored due to the high cost associated with data collec-
tion. Moreover, despite the promise of existing deep learning
techniques, they are not originally designed to exploit the
unique characteristics of complex scientific systems. Scientific
systems are commonly driven by physical processes and vari-
ables that evolve and interact at different spatial and temporal
scales. While existing GCN-based methods have shown some
success in modeling interactions amongst river segments, they
commonly create static graphs based on standard distance
metrics (e.g., geographic or stream distances) without fully

exploiting the physical characteristics of river segments and
also do not capture dynamic interactions over time. In stream
networks, the flow of water from one stream segment takes
a certain amount of time to reach to another stream segment
and this time depends on multiple factors such as the stream
morphology, catchment characteristics, and weather patterns.
Additionally, the connection strength between two stream
segments depends on the velocity and volume of the water
flowing through individual streams, which can also vary over
time. Hence, the weight of different upstream segments on
a downstream segment can vary across time depending on
the variation of these physical variables. Additionally, existing
GCN-based models extract abstract hidden variables that are
propagated over the network, but these hidden variables may
fail to represent true underlying physical relationships that
govern the interactions, especially given limited training data.

In this paper, we propose a PDE-guided Dynamic Graph
Networks (PDE-DGN) to predict water temperature for all
the river segments over a long period. The PDE-DGN cap-
tures temporal dependencies with a recurrent layer while
also modeling the spatial interactions amongst river segments
using dynamic graph structures. Moreover, it incorporates the
governing PDE that describes the heat transfer process in
the river networks. The PDE represents known physical rela-
tionships about dynamic interactions amongst river segments,
and thus can be used to guide the design of evolving graph
structures. In particular, we use finite difference methods to
derive the graph structure from the PDE. The representation
of PDEs is also limited in that some physical parameters (e.g.,
coefficients in PDEs) are unknown and commonly require
expensive calibration. In our proposed method, these unknown
physical parameters can be estimated together with other
neural network parameters efficiently using back propagation.

We implement our proposed method for water temperature
prediction using collected data from the Delaware River Basin
over 36 years. We demonstrate the superior predictive perfor-
mance of our proposed method over existing ML methods. Our
methods have also been shown to produce better performance
when using limited training data that are sparsely distributed
over space (i.e., data are only available from certain stream
segments) and time (i.e., data are only available from certain
seasons). Moreover, the proposed method has better gener-
alizability when tested in data of different distributions. Our
contributions can be summarized as follows:
• We introduce a new dynamic recurrent graph network

architecture to model a river network with interacting
river segments.

• We leverage the knowledge from the underlying PDE to
guide the design of evolving graph structure.

• We evaluate the utility in the context of an ecologically
and societally relevant problem of monitoring river net-
works.

II. RELATED WORK

Our proposed method has multiple components, including
integrating physics into ML, graph neural network architec-

ture, and machine learning for PDE. These topics have been
studied under different contexts.

Recent works have shown the promise of integrating physics
into ML models in improving the predictive performance
and generalizability in scientific problems. This is commonly
conducted in several ways, including physics-guided model
architectures [19], [20], physics-guided loss functions [21],
[22], and other hybrid approaches [23], [24].

Our proposed method is related to physics-guided model
architectures. There are several ways to incorporate known
physics into ML models. For example, one can embed known
physical principles into neural networks (NN) by ascribing
physical meaning for certain neurons in the NN. Muralidlar et
al. [25] built a new architecture to insert physics-constrained
variables as the intermediate variables in the convolutional
neural networks. This method has been tested for predicting
drag force on particle suspensions in moving fluids and has
achieved improved performance. Another direction is to use
ML architecture to encode invariance and symmetries that are
inherent of a physical system. In turbulence modeling and fluid
dynamics, Ling et al. [26] defines a tensor basis neural network
to embed the fundamental principle of rotational invariance
into neural networks for improved prediction accuracy.

When applied to systems with interacting processes, e.g., a
river network, we need to build ML models that can handle
such interactions. The GCN model has proven to be effective
in automatically modeling node interactions in a graph. The
use of GCN has also shown improved prediction accuracy in
several scientific problems [27]–[29]. In a previous work, Jia
et al. [17] leveraged physics to guide the extraction of hidden
variables that are propagated in the GCN model. This method
has been shown to produce better prediction accuracy as well
as improved generalizability. Our proposed method is different
from this work in that we use underlying physics to directly
create new graph structures.

PDEs have been widely used to describe a wide range of
phenomena such as fluid dynamics and quantum mechanics
that cannot be adequately described by ordinary differential
equations (ODEs) [30]. As an example, a typical application
for PDEs is the modeling of congestion in highway net-
works [31], and one popular model for highway control is
the Lighthill-Whitham-Richards model [32]. Finite difference
methods have been widely used to solve PDEs [33]. In
this work, we seek to extend the graph neural network by
incorporating the heat transfer PDE. This extension is non-
trivial because the discretization of PDEs on a network is
inherently more complicated due to the fact that the river seg-
ments are not uniformly distributed. An in-depth discussion of
these complexities that belong to generalized finite difference
methods can be found in [34], [35].

Note that our work is different from existing works on
using ML for solving PDEs [36], [37]. These previous methods
require access to a perfect PDE (i.e., all the coefficients are
known, and the available simulations are always consistent to
the PDE). In these studies, the process of numerically solving
PDEs was accelerated by using ML as a surrogate model.

In contrast, the proposed method herein aims to improve the
prediction of target variables using both observation data and
the underlying PDE. Moreover, the PDE contains unknown
variables that need to be estimated during the training process.
In [38], the authors use neural networks to run continuous time
and discrete time models which are obtained through general
nonlinear PDEs. This method relies on many training iterations
or a very high order Runge-Kutta spatial discretization, and
it enforces the physical relationship only through the loss
function.

III. PROBLEM DEFINITION AND PRELIMINARY

A. Problem definition
Our objective is to model the dynamics of temperature in

a set of connected river segments that together form a river
network. The connections amongst these river segments can
be represented in a graph structure G = {V, E ,A}, where V
represents the set of N river segments and E represents the set
of connections amongst river segments. Specifically, we create
an edge (i, j) ∈ E if the segment i is connected to segment
j. Because we consider the dynamic interactions amongst
river segments, the adjacency matrices A = {A1,A2, ...,AT }
represent the adjacency levels amongst all the segments at each
time step from t = 1 to T . Here a higher value of At

ij indicates
that the segment i has a stronger influence on the segment j at
time t. At

ij = 0 means there is no edge from the segment i to
the segment j at this time. In this paper, we only consider the
evolution of adjacency matrix over time while keeping a static
set of river segments (i.e., node set V) and stream connections
(i.e., edge set E).

B. Recurrent Neural Networks and Long-Short Term Memory
The RNN model has been widely used to model the

temporal patterns in sequential data. The RNN model defines
transition relationships for the extracted hidden representation
through a recurrent cell structure. In this work, we adopt
the Long-Short Term Memory (LSTM) to build the recurrent
layer for capturing long-term dependencies. Each LSTM cell
has a cell state ct, which serves as a memory and allows
preserving information from the past. Specifically, the LSTM
first generates a candidate cell state c̄t by combining xt and the
hidden representation at previous time step ht−1, as follows:

c̄t = tanh(Wh
c ht−1 + Wx

cxt + bc). (1)

where W and b are matrices and vectors, respectively, of
learnable model parameters. Then the LSTM generates a forget
gate f t, an input gate gt, and an output gate ot via sigmoid
function σ(·), as follows:

ft = σ(Wh
fht−1 + Wx

fxt + bf),

gt = σ(Wh
ght−1 + Wx

gxt + bg),

ot = σ(Wh
oht−1 + Wx

oxt + bo).

(2)

The forget gate is used to filter the information inherited
from ct−1, and the input gate is used to filter the candidate
cell state at t. Then we compute the new cell state as follows:

ct = ft ⊗ ct−1 + gt ⊗ c̄t, (3)

where ⊗ denotes the entry-wise product.
Once obtaining the cell state, we can compute the hidden

representation by filtering the cell state using the output gate,
as follows:

ht = ot ⊗ tanh(ct). (4)

According to the above equations, we can observe that the
computation of ht combines the information at current time
step (xt) and previous time step (ht−1 and ct−1), and thus
encodes the temporal patterns learned from data.

IV. METHOD

In this section, we describe the details of the PDE-DGN
method. We start with introducing the dynamic graph model
architecture for capturing stream water dynamics and in-
teractions amongst river segments. Then we discuss a new
strategy to enforce physical relationships to the dynamic graph
structure by leveraging the physical knowledge embedded in
known governing PDEs.

A. Dynamic Recurrent Graph Network

Water temperature in rivers has strong spatial and temporal
patterns as a result of heat transfer with climate (e.g., solar ra-
diation) and neighboring river segments [4]. The ML model for
river networks also needs to capture such spatial and temporal
dependencies in order to model the temperature dynamics. In
particular, we build a dynamic recurrent graph network, which
incorporate the information from both previous time steps and
neighbors (i.e., upstream segments) when modeling each river
segment (Fig. 1).

The proposed model aims to embed the input data and the
spatio-temporal context of each river segments into a hidden
representation ht at each time step. Our model structure is
inspired by the Recurrent Graph Model [17] but we extend
it to take account of changes in the graph structure. We
now describe the recurrent process of generating the hidden
representation ht from ht−1.

First, for each river segment i, the model needs to aggregate
the influence from its neighboring segments j such that (i, j) ∈
E . Specifically, assuming we have gathered the embeddings
ht−1
j from all the upstream segments at previous time step,

we first transform these embeddings through a function f(·),
which extracts the information that is most relevant to the
downstream segment i. For example, the amount of water
advected from this segment and its water temperature can
directly affect the change of water temperature for its down-
stream segments. This function can be implemented using
fully connected layers. Then we develop a new recurrent cell
structure for each segment i by extending the standard LSTM
structure (Eq. 3) that integrates both the historical information
from the same river segment (i.e., the previous state ct−1

i)
and the spatial context from its upstreams (i.e., f(ht−1

j) for
(j, i) ∈ E). This can be expressed as follows:

cti = fti ⊗ (ct−1
i +

∑
(i,j)∈E

At
ijf(ht−1

j)) + gt
i ⊗ c̄ti (5)

General PDE
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑁𝑁(

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ,

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕2)

Climate Drivers
(air temperature, precip)

Dynamic Recurrent Graph Networks

Observation

Update
unknown
physical
variables
(PDE coefficient)

𝟏𝟏
𝟑𝟑

𝟐𝟐

𝟓𝟓

𝟒𝟒

Stream Structure

Dynamic graph structure

t - 1 t t + 1

1
2

3

5

4

1
2

3

5

4

1
2

3

5

4

. . .

𝐱𝐱𝟑𝟑𝒕𝒕

𝐡𝐡𝟑𝟑𝒕𝒕

𝐲𝐲𝟑𝟑𝒕𝒕

LSTM
cell

𝐱𝐱𝟑𝟑𝒕𝒕+𝟏𝟏

𝐡𝐡𝟑𝟑𝒕𝒕+𝟏𝟏

𝐲𝐲𝟑𝟑𝒕𝒕+𝟏𝟏

LSTM
cell

𝐱𝐱𝟏𝟏𝒕𝒕

𝐡𝐡𝟏𝟏𝒕𝒕
𝒚𝒚𝟏𝟏𝒕𝒕

LSTM
cell

𝐱𝐱𝟐𝟐𝒕𝒕

𝐡𝐡𝟐𝟐𝒕𝒕

𝐲𝐲𝟐𝟐𝒕𝒕

LSTM
cell

LSTM
cell

𝐡𝐡𝟑𝟑𝒕𝒕−𝟏𝟏

𝐲𝐲𝟑𝟑𝒕𝒕−𝟏𝟏

𝐱𝐱𝟑𝟑𝒕𝒕−𝟏𝟏

𝐱𝐱𝟏𝟏𝒕𝒕−𝟏𝟏

𝐡𝐡𝟏𝟏𝒕𝒕−𝟏𝟏

𝒚𝒚𝟏𝟏𝒕𝒕−𝟏𝟏

LSTM
cell

𝐱𝐱𝟐𝟐𝒕𝒕−𝟏𝟏

𝐡𝐡𝟐𝟐𝒕𝒕−𝟏𝟏

𝐲𝐲𝟐𝟐𝒕𝒕−𝟏𝟏

LSTM
cell

𝐀𝐀𝟑𝟑𝟑𝟑𝒕𝒕−𝟏𝟏

adjacency matrices 𝐀𝐀1,…, 𝐀𝐀𝑇𝑇

Fig. 1. The overall flow of the proposed method. The dynamic recurrent graphs take the input of climate drivers and dynamic graph structures derived from
the stream network and the underlying PDE. The thickness of edges in dynamic graph structures represents different edge weights. The training of the model
updates both network parameters and coefficients in the PDE to refine graph structures.

The forget gate not only filters the previous information
from the segment i itself but also from its neighbors (i.e.,
upstream segments). The information from each upstream
segment j is weighted by the adjacency level At

ij between
i and j at time t. The matrix At varies over time due
to the change of influence amongst river segments, which
is described in Section IV-B. When a river segment has
no upstream segments (i.e., headwater stream segment), the
computation of cti is the same as with the standard LSTM.
Also, we use the f(ht−1

j) from the previous time step because
of the time delay in transferring the influence from upstream
to downstream segments.

After obtaining the cell state, we can compute the hidden
representation ht

i by following Eq. 4. Finally, we generate the
predicted output from the hidden representation as follows:

ŷti = Wyht
i + by, (6)

where Wy and by are model parameters.
After applying this recurrent process to all the time steps,

we define a loss, LDGN, using true observations Y = {yti}
that are available at certain time steps and certain segments,
as follows:

LDGN =
1

|Y|
∑

{(i,t)|yti∈Y}

(yti − ŷti)
2. (7)

B. PDE-Driven Dynamic Graph Structure

Water temperature changes in rivers as a result of the
heat transfer process. The heat transfer process has been
widely studied and also used to build process-based models
to simulate water temperature change along stream networks
and through time [4]. Here we introduce a new strategy that
leverages such underlying physical process to estimate the
graph structure used in our proposed method. By enforcing
such general physical relationships, the model stands a better
chance at learning generalizable patterns even with small
amounts of training data.

In particular, we consider the temperature change resulted
from the net gain of energy fluxes by following the heat
transfer formula described in [4]. This formula is expressed
as follows:

∂y

∂t
= −U ∂y

∂s
+D

∂2y

∂s2
+

Htotal

ρ · cp · d
, (8)

where y = y(s, t) is the water temperature (°C) at time t
and location s, U is mean channel velocity (m s−1), D is a
longitudinal dispersion coefficient (m s−2), ρ is the density
of water (1000 kg m−3), cp is the specific heat of water
(41.8×103 J kg-1 °C−1), and d is the mean channel depth (m).
Here ∂y

∂t denotes the water temperature change over time (s)
while ∂y

∂s denotes the water temperature change over stream
distance (m). Htotal represents the total energy available for

transfer to or from the river channel. Eq. 8 describes the
dynamics of river temperature from a temporal perspective;
its rearrangement in the form ∂y

∂s also permits the calculation
of river temperature in a spatial framework [39]. When using
Eq. 8, we assume that the channel is well mixed and does
not contain notable lateral temperature gradients. In order to
derive the spatial relationships from Eq. 8, we use the finite
difference method. Finite difference methods (FDMs) are a
group of approaches used for approximating real values or
variable derivatives of a function on predefined mesh points
by solving algebraic equations containing finite differences
and values from nearby points. The error between the discrete
solutions and the exact solutions is measured through Taylor
expansions.

Our objective is to construct matrix At from the PDE
(Eq. 8). Real-world river systems are complex. Multiple river
segments in a network may interact with each other and these
interactions are non-uniform in space and time. Moreover,
river segments are usually non-uniformly distributed in space
which makes the equal distance FDMs fail. Hence, there is a
need to develop a new numerical scheme to handle irregular
distributed points. In the following, we will discuss how we
use the PDE to contruct the graph structure in two parts: (1)
How to numerically approximate the solution of the PDE using
irregularly distributed points. (2) How to use use the PDE
under special conditions (e.g., intersections and boundaries).

1) PDE over irregular points: A feasible way towards the
first problem is to use a step variational FDM which is often
referred to as generalized finite difference methods (GFDMs).
GFDMs are meshless methods and have been used in a wide
variety of applications [34]. For the ease of presenting PDEs
and GFDMs, we explicitly represent the set of time steps as
{t1, t2, ..., tT }, where the time interval between consecutive
time steps is ∆t. We also assume the spatial locations of
N segments as {s1, s2, ...sN}. During our presentation, we
consider si−1 and si+1 to be the closest upstream and down-
stream segments to si, respectively. Using GFDM, the first
order temporal derivative can be approximated as follows:

yt(si, tn) =
∂y(si, tn)

∂t
≈ yi(si, tn+1)− yi(si, tn)

∆t
. (9)

Consider one river segment with the left distance ∆s1 to
the left observation point and right distance ∆s2 to the right
observation point (see Fig. 2). The first order spatial derivative
are calculated as follows:

ys(si−1/2, tn) =
∂y(si−1/2, tn)

∂s
≈ y(si, tn)− y(si−1, tn)

∆s1
,

(10)

ys(si+1/2, tn) =
∂y(si+1/2, tn)

∂s
≈ y(si+1, tn)− y(si, tn)

∆s2
,

(11)

Here, si+1/2 represents the middle points of si and si+1.
si−1/2 represents the middle points of si and si−1. We

use these two approximated first order spatial derivatives to
approximate a second order spatial derivative which can be
estimated as follows:

yss(si, tn) =
∂ys(si, tn)

∂s
≈
ys(si+1/2, tn)− ys(si−1/2, tn)

(∆s1 + ∆s2)/2
.

(12)

The truncation error for Eqs. 9, 10, 11 and 12 are O(∆t),
O(∆s1), O(∆s2) and O(((∆s1 + ∆s2)/2)2), respectively.

∆s1
∆𝑠𝑠2

s𝑖𝑖−1

s𝑖𝑖+1

s𝑖𝑖

Fig. 2. The river segment diagram for estimating first-order and second-order
spatial derivatives (Eqs. 10, 11 and 12).

Now we can use Eqs. 9-12 to approximate the derivatives in
Eq. 8. By substituting the approximated derivatives into Eq. 8,
we can rewrite the original PDE as follows:

y(si, tn+1)− y(si, tn)

∆t

=−U y(si+1, tn)− y(si, tn)

∆s2
+D

ys(si+1/2, tn)− ys(si−1/2, tn)

(∆s1 + ∆s2)/2

+
Htotal

ρ · cp · d
.

(13)
Here we use Eq. 11 to approximate ys(si, tn). Then by

rearranging the terms in Eq. 13, we get the following repre-
sentation for y(si, tn+1), as follows:

y(si, tn+1)

=(
2∆tD

∆s1(∆s1 + ∆s2)
)y(si−1, tn)

+ (
U∆t

∆s2
− 2∆tD

∆s1(∆s1 + ∆s2)
− 2∆tD

∆s2(∆s1 + ∆s2)
)y(si, tn)

+ (
2∆tD

∆s2(∆s1 + ∆s2)
− U∆t

∆s2
)y(si+1, tn) +

Htotal

ρ · cp · d
∆t.

(14)

Because we have multiple rivers in a river graph, we
use a vector Y (tn) = {y(s1, tn), y(s2, tn), ..., y(sN , tn)} to
represent the temperatures on all the river segments at a
specific time step tn. Note that in Eq. 13, i − 1 and i + 1
represent two segments that are connected to the segment i,
i.e., (i−1, i)∪(i, i+1) ⊂ E , and they are the closest upstream
and downstream segments to the segment i, respectively.
Then we can derive the update formula at each time step by
converting Eq. 14 into the following form:

Y (tn+1) = Atn+1Y (tn) + Constant, (15)

where each row of Atn+1 can be determined by Eq. 14. We
ignore the constant term when we build the graph structure.

∆𝑠𝑠1

∆𝑠𝑠2

∆𝑠𝑠3

s𝑖𝑖

s𝑖𝑖+1

s𝑖𝑖−1
s𝑖𝑖−2

Fig. 3. River intersection diagram. The center point has two upstream points
and one downstream point. In this scenario, we consider Dyss = D1yss,1+
D2yss,2.

For other variables, the channel velocity U is calculated as the
quotient of streamflowt

i/cai, where cai represents the cross-
sectional area of each stream segment i, and we use the
streamflow values that are simulated by a physics-based model
PRMS [40]. Because we do not have the measured value of cai
and D, we estimate these values from observations of water
temperature.

2) Dealing with special conditions: Now we discuss the
estimation of spatial derivatives under two special conditions;
intersections and boundaries. First, we consider the inter-
sections in river networks where the target river segment
can have multiple upstream segments and one downstream
segment (Note that in real-world river networks, it is very
rare for naturally flowing river segments to have more than
one downstream segment). We show one such example in
Fig. 3. The calculation of the first-order derivative ys requires
data points from both the target segment and the neighboring
segments (Eqs. 10 and 11). Additional complexity arises if
we want to estimate the first-order gradients using multiple
upstream segments. Hence, we use the data point from the
single downstream segment to estimate the first-order deriva-
tive by following Eq. 11.

The estimation of second-order derivative yss (i.e., heat dif-
fusion effect) requires data points from both sides of the target
segment. To adapt Eq. 12 to handle multiple upstream seg-
ments, a straightforward method is to only focus on the closest
upstream segment and neglect all the other points, termed
as 2-points approximation. Although this method results in
a simplified solution, it may degrade the performance due to
the ignorance of the influence from other upstream segments.
This issue can be further exacerbated if no observations of
water temperature are available for the closest upstream.

Another method is to aggregate the diffusion effect from all
the upstream segments. Because more upstream segments lead
to more heat exchange, we sum the second-order derivative yss
over all the upstream segments.

In particular, in the heat transfer PDE (Eq. 8), we convert
Dyss into

∑k
i=1Di yss,i where k is the total number of

upstream segments at the current river segment, and yss,i
represents the second-order derivative estimated using the

upstream segment i and the downstream segment following
Eq. 12. As a result, each row of At contains k values from
upstream segments, one value from the downstream segment
and one value from itself.

Second, we consider segments that are located at the
boundary (i.e., when they have no upstream or downstream
segments). It is challenging for estimating spatial derivatives
(especially second-order derivatives) for these segments due
to the missing neighbors on one side. To this end, we assume
the values outside the boundary are always identical to the
temperatures on the boundary, i.e., we have the Neumann
boundary condition ys(sb, t) = 0 where sb denotes a boundary
point. Here we show the computation of the second-order
derivative for headwater segments (i.e., segments with no
upstream segments) as follows:

yss(sb, tn) ≈
ys(sb+1/2, tn)

(∆s1 + ∆s2)/2
, (16)

where ∆s1 is a virtual distance measure and is pre-defined in
our implementation.

Algorithm 1 Calculation of dynamic graph structures at a
specific time step t.

for i = 1 : number of river segments do
U = streamflowt

i/cai
for k = 1 : number of upstreams of i do
coefup,k = 2∆tcrossareai

∆s1,k(∆s1,k+∆s2)

coefi,k = U∆t
∆s2
− 2∆tDL

∆s1,k(∆s1,k+∆s2) −
2∆tDL

∆s2(∆s1,k+∆s2)

coefdn,k = 2∆tDL

∆s2(∆si,k+∆s2) −
U∆t
∆s2

end for
coefi =

∑
k coefi,k

coefdn =
∑

k coefdn,k
for k = 1 : number of upstreams of i do
At

i,up(k) = coefup,k, where up(k) is the index of kth

upstream segment
end for
At

i,i = coefi
At

i,dn = coefdn
end for

We show the detailed process of computing the dynamic
graph structures in Algorithm 1 and then summarize our
proposed method in Algorithm 2. In each iteration, we first
estimate the graph structure using the PDE and the current
value of cai and {Di}. Then we update cai and {Di}
as well as other model parameters using available training
observations.

V. EXPERIMENTAL RESULTS

We evaluate the proposed method for predicting stream
temperature using real-world data collected from the Delaware
River Basin, which is an ecologically diverse region and a
societally important watershed along the east coast of the
United States as it provides drinking water to over 15 million
people [41]. We first describe our dataset and baselines. Then

Algorithm 2 The flow of the proposed PDE-DGN model.
initialize the network model and the physical parameters
{Di} and {cai}
for epoch = 1 : number of training iterations do

for t = 1 : number of time steps do
Estimate adjacency matrix At using the current values
of {Di} and {cai} following Algorithm 1
Make predictions using the recurrent graph network
following Eqs. 5-6
Add the accumulated errors to the loss function (Eq. 7)

end for
update model parameters (i.e., networks weights) and
physical parameters (i.e., {Di} and cai)

end for

we discuss the results about the predictive performance using
sparse data, the spatial distribution of errors, and model gen-
eralization. All experiments are conducted using Tensorflow
on a computer with the following configuration: Intel Core
i7-8750H CPU @2.20GHz × 6 Processor, 16 GiB Memory,
64-bit Win10 OS.

A. Dataset and baselines

The dataset is pulled from U.S. Geological Survey’s Na-
tional Water Information System [42] and the Water Quality
Portal [43], the largest standardized water quality dataset for
inland and coastal waterbodies [43]. Observations at a specific
latitude and longitude were matched to river segments that
vary in length from 48 to 23,120 meters. The river segments
were defined by the national geospatial fabric used for the
National Hydrologic Model as described by Regan et al. [44],
and the river segments are split up to have roughly a one day
water travel time. We match observations to river segments by
snapping observations to the nearest stream segment within a
tolerance of 250 m.

We study a subset of the Delaware River Basin (Christina
River Watershed) with 42 river segments that feed into the
mainstem Delaware River at Wilmington, Delaware. We use
input features at the daily scale from Oct 01, 1980, to Sep
30, 2016 (13,149 dates). The input features have 10 dimen-
sions which include daily total precipitation, daily mean air
temperature, day of the year, solar radiation, shade fraction,
potential evapotranspiration and the geometric features of
each segment (e.g., elevation, length, slope and width). Water
temperature observations were available for 32 segments but
the temperature was observed only on certain dates. The
number of temperature observations available for each segment
ranges from 1 to 9,810 with a total of 51,103 observations
across all dates and segments. We compare model performance
to multiple baselines, which are described as follows:

• Artificial neural networks (ANN): We train an ANN
model using data collected from all the segments on
all the dates. The model is applied to predict water
temperature on each date separately.

• Recurrent neural networks (RNN): We train an RNN
model with the LSTM cell for modeling temperature
dynamics across consecutive dates. The RNN model takes
the daily input drivers but the loss is only defined on those
dates with observations.

• HydroNets [16]: This method also takes into account both
the temporal dependencies and spatial river structures
using customized model architecture. It has poor per-
formance on our dataset because its river-specific model
parameters cannot be effectively trained for segments
without observations.

• Recurrent Graph Neural Networks (RGrN) [17]: This
baseline combines the graph convolutional networks and
LSTM, and has shown promising results in predicting
water temperature in streams.

• 2-points DGN: This is a variant of the proposed method,
which only utilizes one closest upstream segment when
estimating the second-order derivatives (as discussed in
Section IV-B).

All the models are trained and applied to all the river
segments. In the following experiments, we train each ML
model using data from the first 24 years (Oct 01, 1980, to
Sep 30, 2004) and then test in the next 12 years (Oct 01,
2004, to Sep 30, 2016). The hidden representation in these
ML models is in 20 dimensions. We set the learning rate to
be 0.0005 and update the model for 100 epochs for modeling
water temperature.

B. Predictive performance using sparse data

We report the testing performance of different methods for
temperature prediction and streamflow prediction in Table I.
We also test the capacity of each model to learn using less
training data by randomly selecting 5% and 10% labeled data
from first 24 years for training the model. We repeat each
experiment five times with random model initialization and
random selection of sparser data (5%, 10%) and report the
mean and standard deviation of the root mean square error
(RMSE).

We observe that all the methods have larger RMSE val-
ues when we reduce the amount of training data. Our pro-
posed method PDE-DGN outperforms baselines using differ-
ent amounts of training data. In particular, RGrN and Hy-
droNets perform worse than PDE-DGN because these models
use a static graph based on the river network structure and
thus they are limited in fully capturing dynamic interactions
amongst streams. Although the standard graph convolutional
structure can also extract different hidden representation for
different segments (given their individual input features) and
propagate the extracted information to the neighbors, such ex-
traction process is conducted using a set of parameters shared
over all the segments and over time. Hence, they cannot model
how segment-specific physical variables (e.g., cross-sectional
areas) and time-varying variables (e.g., streamflow) affect the
segment interactions. Moreover, by leveraging the knowledge
encoded by the PDE, the proposed method stands a higher
chance at extracting more generalizable patterns. Our method

TABLE I
AVERAGE RMSE (± STANDARD DEVIATION) FROM FIVE RUNS FOR
TEMPERATURE PREDICTION USING 5%, 10%, AND 100% TRAINING

LABELS. HERE OUR METHOD IS COMPARED WITH ARTIFICIAL NEURAL
NETWORKS (ANN), RECURRENT NEURAL NETWORKS (RNN),

HYDRONETS, RGRN, AND PDE-DGN. BOLDED VALUES INDICATE THE
BEST PERFORMING MODEL FOR EACH OF THE PERCENT TRAINING LABELS

USED.

Method 5% 10% 100%
ANN 3.706±0.114 2.159±0.059 1.529±0.017
RNN 1.841±0.107 1.731±0.119 1.484±0.051
HydroNets 1.768±0.120 1.666±0.021 1.474±0.016
RGrN 1.744±0.073 1.654±0.077 1.443±0.017
2 points DGN 1.756±0.088 1.633±0.021 1.459±0.046
PDE-DGN 1.740±0.081 1.574±0.063 1.428±0.024

also outperforms the 2-points DGN method, which confirms
the effectiveness of incorporating multiple upstream segments
in estimating the second-order derivatives for representing the
heat diffusion process.

Also, the improvement from RNN to RGrN shows that the
incorporation of upstream-downstream dependencies in river
networks is helpful to improve the accuracy for predictions.
Such improvement is especially obvious as we use less training
data. In terms of speed, the overall running time for a complete
PDE-DGN model is around 45 minutes which is slightly
higher than RGrN method since the only extra overhead during
training stage is updating the adjacent matrix.

C. Assessing performance on unobserved segments

One important task for modeling river networks is to make
predictions on unobserved river segments, which commonly
exist in real-world basins. In this test, we evaluate different
models for predicting river segments with no observation data.
We report the results in Table II. Here Seg A to Seg E are five
river segments that have sufficient observation data for stream
temperatures. Each row shows the results for an individual
experiment where we intentionally remove the temperature
observations for a specific segment during the training period
(Oct 01, 1980, to Sep 30, 2004). Then we report the prediction
performance of RNN, RGrN, and PDE-DGN only on this
segment during the testing period (Oct 01, 2004, to Sep 30,
2016) before and after we remove the training data.

We can observe larger errors produced by all these models
after we remove training data for a segment. This is expected
because different segments may exhibit different patterns
and observations when the target segment is not used for
training the model. However, we observe that the drop in
performance of PDE-DGN is consistently smaller than that
of the RNN model and the RGrN model. This confirms that
the incorporation of the governing PDE helps the ML model
to learn more generalizable patterns. We can also observe
that RGrN generally performs better than the RNN model,
which demonstrates the effectiveness of the graph structure in
propagating relevant information to unobserved segments.

In Fig. 4, we show the predictions made by different models
on segments A-E after we intentionally hide the training data

TABLE II
RMSE OF TEMPERATURE PREDICTION ON INDIVIDUAL SEGMENTS AFTER

REMOVING TRAINING OBSERVATION DATA. HERE WE COMPARE THE
PERFORMANCE OF RNN, RGRN, AND PDE-DGN MODELS. BOLDED

VALUES INDICATE THE BEST PERFORMING MODEL FOR EACH SEGMENT
AND TRAINING SCENARIO.

Segment Method With Obs Without Obs
RNN 2.297±0.082 4.104±0.921

Seg A RGrN 2.176±0.070 3.724±0.637
PDE-DGN 2.151±0.020 3.127±0.366
RNN 1.116±0.064 1.440±0.068

Seg B RGrN 1.014±0.016 1.387±0.068
PDE-DGN 0.994±0.062 1.289±0.055
RNN 1.082±0.083 2.302±0.124

Seg C RGrN 1.007±0.032 2.021±0.217
PDE-DGN 0.992±0.027 1.936±0.219
RNN 0.955±0.053 2.527±0.161

Seg D RGrN 0.943±0.020 2.278±0.391
PDE-DGN 0.917±0.063 1.971±0.122
RNN 1.067±0.045 1.461±0.097

Seg E RGrN 0.979±0.018 1.277±0.063
PDE-DGN 0.980±0.051 1.243±0.046

from each of these segments. PDE-DGN better matches true
observations compared with other methods when the model
does not have access to the training data from these segments.
RNN generally predicts a smoother trajectory but does not
capture temperature changes very well.

The 2-points DGN method does not work as well as the
complete PDE-DGN because the DGN model only consider
one closest upstream. However, if a river segment has a single
upstream and downstream segment, the two approaches may
perform similarly (e.g., Segment B shown in Fig. 4 (g)). In
contrast, the segment E has two upstream segments, and that
is why PDE-DGN performs better than 2-points DGN. The
segment C also has two upstream segments but the PDE-
DGN has similar performance with the 2-points DGN. This
is because its two upstreams observation points are far away
from the current segment thus making very little contribution
(i.e., having much lower weights in the adjacency matrix) to
the segment C.

D. Generalization test

It is known that traditional ML models are limited in
generalizing to a new scenario that is very different from
training data. We hypothesize that the proposed PDE-DGN
has better generalizability because it follows general physical
relationships that govern underlying processes. Here we test
model generazability for stream temperature prediction across
different seasons. In particular, we train each model using data
only from colder seasons (spring, fall and winter) in the first
24 years and then test in summers in the next 12 years, as
shown in Table III (first column). We also show a baseline
in which each model is trained using all the data from the
first 24 years and then tested in summers in the last 12 years
(Table III second column).

We can observe that PDE-DGN performs better than other
methods because of its awareness of the underlying physical

05/30/200702/20/2007 04/10/2007

(a) Segment A

03/30/200812/20/2007 02/10/2008

(b) Segment B

03/30/200812/20/2007 02/10/2008

(c) Segment C

05/30/200702/20/2007 04/10/2007

(d) Segment D

05/30/200702/20/2007 04/10/2007

(e) Segment E

05/30/200702/20/2007 04/10/2007

(f) Segment A

03/30/200812/20/2007 02/10/2008

(g) Segment B

10/20/200807/10/2008 09/10/2008

(h) Segment C

05/30/200702/20/2007 04/10/2007

(i) Segment D

02/20/2007 04/10/2007 05/30/2007 05/30/200702/20/2007 04/10/2007

(j) Segment E

Fig. 4. Predictions made by (a-e) RNN, RGrN, PDE-DGN and (f-j) 2-points DGN and the complete PDE-DGN in Segments A-E after we intentionally hide
the training data for each segment.

relationships. Because the adjacency matrices are created
based on the governing PDE, the model has a higher chance
to learn physically consistent patterns. Compared to the static
graph model of the RGrN, the dynamic graph model of the
PDE-DGN is advantageous because the connection strength
between stream segments can change substantially in one
season compared to another. The HydroNets model performs
poorly because it is more likely to overfit the training data due
to the higher model complexity.

TABLE III
TEMPERATURE RMSE IN SUMMERS FROM 2005 TO 2016. EACH MODEL

IS TRAINED USING OBSERVATION DATA FROM SPRING, FALL, AND WINTER
SEASONS (COLUMN 1) OR THE OBSERVATIONS DATA FROM ALL THE

SEASONS (COLUMN 2) FROM OCT 1980 TO SEP 2004. HERE OUR
METHOD IS COMPARED AGAINST ANN, RNN, HYDRONETS, RGRN,

2-POINTS DGN, AND PDE-DGN). BOLDED VALUES INDICATE THE BEST
PERFORMING MODEL FOR EACH TRAINING SCENARIO.

Method Train on cold seasons Train on all the data
ANN 2.138±0.093 1.529±0.017
RNN 2.104±0.080 1.484±0.051
HydroNets 2.792±0.018 1.474±0.016
RGrN 2.085±0.046 1.443±0.017
2 points DGN 2.106±0.064 1.459±0.046
PDE-DGN 2.055±0.051 1.428±0.024

VI. CONCLUSION

In this paper, we propose a novel method called PDE-DGN
for modeling interacting segments and predicting temperatures
in river networks. We leverage the prior physical knowledge
about segment-to-segment interactions embedded in PDE-
based models to enhance the learning of latent representation
in the proposed ML model. Moreover, we approximate the
physical meaning by applying FDMs on the river segments

guided by PDEs. Although there were marginal improvements
in model performance when trained on all the data, our pro-
posed method demonstrated superiority when handling data-
sparse conditions and in generalizing to unseen scenarios.
The proposed method also estimates physically meaningful
parameters (e.g., PDE coefficients) that could inform other
modeling or resource management activities and increase trust
in deep learning models. In addition to modeling variables in
river networks, the proposed method can be adjusted to model
other complex systems which involve dynamic interacting
processes. For example, this method could be potentially used
for modeling particle interactions in quantum mechanics and
gene coexpression in biological research.

VII. ACKNOWLEDGEMENTS

This work was support by the USGS Award G21AC10207,
the National Science Foundation (NSF) under awards
1910017, 1918450, and 2028001, and Pitt Momentum Award.
This research was supported in part by the University of Pitts-
burgh Center for Research Computing through the resources
provided. Any use of trade, firm, or product names is for
descriptive purposes only and does not imply endorsement by
the U.S. Government. All model drivers used in this analysis
can be found at [45].

REFERENCES

[1] J. R. Brett, “Energetic responses of salmon to temperature. a study of
some thermal relations in the physiology and freshwater ecology of
sockeye salmon (oncorhynchus nerkd),” American zoologist, vol. 11,
no. 1, pp. 99–113, 1971.

[2] J. J. Magnuson, L. B. Crowder, and P. A. Medvick, “Temperature as an
ecological resource,” American Zoologist, vol. 19, no. 1, pp. 331–343,
1979.

[3] C. K. Batchelor and G. Batchelor, An introduction to fluid dynamics.
Cambridge university press, 2000.

[4] S. J. Dugdale, D. M. Hannah, and I. A. Malcolm, “River temperature
modelling: A review of process-based approaches and future directions,”
Earth-Science Reviews, vol. 175, pp. 97–113, 2017.

[5] F. Theurer, K. Voos, and W. Miller, “Instream water temperature model.
instream flow information paper 16. us fish wildl serv,” Div. Biol. Serv.,
Tech. Rep. FWS OBS, vol. 84, no. 15, pp. 11–42, 1984.

[6] S. L. Markstrom, R. S. Regan, L. E. Hay, R. J. Viger, R. M. Webb, R. A.
Payn, and J. H. LaFontaine, “Prms-iv, the precipitation-runoff modeling
system, version 4,” US Geological Survey Techniques and Methods, no.
6-B7, 2015.

[7] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh Annual
Conference of the International Speech Communication Association,
2010.

[8] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference on. IEEE, 2013,
pp. 6645–6649.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[11] H. Gao, Z. Wang, L. Cai, and S. Ji, “Channelnets: Compact and efficient
convolutional neural networks via channel-wise convolutions,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2020.

[12] N. Ma, S. Mazumder, H. Wang, and B. Liu, “Entity-aware dependency-
based deep graph attention network for comparative preference classifi-
cation,” in Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, 2020, pp. 5782–5788.

[13] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2018, pp.
974–983.

[14] D. Li and H. Ji, “Syntax-aware multi-task graph convolutional networks
for biomedical relation extraction,” in Proceedings of the Tenth Inter-
national Workshop on Health Text Mining and Information Analysis
(LOUHI 2019), 2019, pp. 28–33.

[15] Y. Ye, S. Hou, L. Chen, J. Lei, W. Wan, J. Wang, Q. Xiong, and F. Shao,
“Out-of-sample node representation learning for heterogeneous graph in
real-time android malware detection.” in IJCAI, 2019, pp. 4150–4156.

[16] Z. Moshe, A. Metzger, G. Elidan, F. Kratzert, S. Nevo, and R. El-Yaniv,
“Hydronets: Leveraging river structure for hydrologic modeling,” arXiv
preprint arXiv:2007.00595, 2020.

[17] X. Jia, J. Zwart, J. Sadler, A. Appling, S. Oliver, S. Markstrom,
J. Willard, S. Xu, M. Steinbach, J. Read, and V. Kumar, “Physics-
guided recurrent graph model for predicting flow and temperature in
river networks,” in SIAM International Conference on Data Mining.
SIAM, 2021.

[18] X. Jia, B. Lin, J. Zwart, J. Sadler, A. Appling, S. Oliver, and J. Read,
“Graph-based reinforcement learning for active learning in real time:
An application in modeling river networks,” in Proceedings of the 2021
SIAM International Conference on Data Mining (SDM). SIAM, 2021,
pp. 621–629.

[19] B. Anderson, T. S. Hy, and R. Kondor, “Cormorant: Covariant molec-
ular neural networks,” in Advances in Neural Information Processing
Systems, 2019, pp. 14 510–14 519.

[20] N. Muralidhar, M. R. Islam, M. Marwah, A. Karpatne, and N. Ra-
makrishnan, “Incorporating prior domain knowledge into deep neural
networks,” in 2018 IEEE International Conference on Big Data (Big
Data). IEEE, 2018, pp. 36–45.

[21] X. Jia, J. Willard, A. Karpatne, J. Read, J. Zwart, M. Steinbach, and
V. Kumar, “Physics guided rnns for modeling dynamical systems: A
case study in simulating lake temperature profiles,” in Proceedings of
the 2019 SIAM International Conference on Data Mining. SIAM, 2019,
pp. 558–566.

[22] J. S. Read, X. Jia, J. Willard, A. P. Appling, J. A. Zwart, S. K. Oliver,
A. Karpatne, G. J. Hansen, P. C. Hanson, W. Watkins et al., “Process-
guided deep learning predictions of lake water temperature,” Water
Resources Research, 2019.

[23] J.-X. Wang, J.-L. Wu, and H. Xiao, “Physics-informed machine learning
approach for reconstructing reynolds stress modeling discrepancies
based on dns data,” Physical Review Fluids, 2017.

[24] D. Liu and Y. Wang, “Multi-fidelity physics-constrained neural network
and its application in materials modeling,” Journal of Mechanical
Design, vol. 141, no. 12, 2019.

[25] N. Muralidhar, J. Bu, Z. Cao, L. He, N. Ramakrishnan, D. Tafti,
and A. Karpatne, “Phynet: Physics guided neural networks for particle
drag force prediction in assembly,” in Proceedings of the 2020 SIAM
International Conference on Data Mining. SIAM, 2020, pp. 559–567.

[26] J. Ling, A. Kurzawski, and J. Templeton, “Reynolds averaged turbulence
modelling using deep neural networks with embedded invariance,” J.
Fluid Mech, 2016.

[27] Y. Qi, Q. Li, H. Karimian, and D. Liu, “A hybrid model for spatiotem-
poral forecasting of pm2. 5 based on graph convolutional neural network
and long short-term memory,” Science of the Total Environment, 2019.

[28] T. Xie and J. C. Grossman, “Crystal graph convolutional neural networks
for an accurate and interpretable prediction of material properties,”
Physical review letters, vol. 120, no. 14, p. 145301, 2018.

[29] D. Zhu, F. Zhang, S. Wang, Y. Wang, X. Cheng, Z. Huang, and
Y. Liu, “Understanding place characteristics in geographic contexts
through graph convolutional neural networks,” Annals of the American
Association of Geographers, vol. 110, no. 2, pp. 408–420, 2020.

[30] L. C. Evans, “Partial differential equations,” 2010.
[31] A. M. Bayen, R. L. Raffard, and C. J. Tomlin, “Network congestion

alleviation using adjoint hybrid control: Application to highways,” in
International Workshop on Hybrid Systems: Computation and Control.
Springer, 2004, pp. 95–110.

[32] M. J. Lighthill and G. B. Whitham, “On kinematic waves ii. a theory
of traffic flow on long crowded roads,” Proc. R. Soc. Lond. A, vol. 229,
no. 1178, pp. 317–345, 1955.

[33] G. D. Smith, G. D. Smith, and G. D. S. Smith, Numerical solution
of partial differential equations: finite difference methods. Oxford
university press, 1985.

[34] B. Heinrich, Finite difference methods on irregular networks: a gener-
alized approach to second order elliptic problems. Springer, 1987.

[35] J. Benito, F. Urena, and L. Gavete, “Influence of several factors in the
generalized finite difference method,” Applied Mathematical Modelling,
vol. 25, no. 12, pp. 1039–1053, 2001.

[36] L. Arsenault, A. Lopez-Bezanilla, O. von Lilienfeld, and A. Millis,
“Machine learning for many-body physics: The case of the anderson
impurity model,” Phys. Rev. B, 2014.

[37] K. Rudd and S. Ferrari, “A constrained integration (cint) approach to
solving partial differential equations using artificial neural networks,”
Neurocomputing, 2015.

[38] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics informed deep
learning (part i): Data-driven solutions of nonlinear partial differential
equations,” arXiv preprint arXiv:1711.10561, 2017.

[39] G. Garner, I. A. Malcolm, J. P. Sadler, and D. M. Hannah, “What
causes cooling water temperature gradients in a forested stream reach?”
Hydrology and Earth System Sciences, vol. 18, no. 12, p. 5361, 2014.

[40] S. L. Markstrom, R. S. Regan, L. E. Hay, R. J. Viger, R. M. Webb, R. A.
Payn, and J. H. LaFontaine, “Prms-iv, the precipitation-runoff modeling
system, version 4,” US Geological Survey Techniques and Methods, no.
6-B7, 2015.

[41] T. N. Williamson, J. G. Lant, P. Claggett, E. A. Nystrom, P. C. Milly,
H. L. Nelson, S. A. Hoffman, S. J. Colarullo, and J. M. Fischer,
“Summary of hydrologic modeling for the delaware river basin using
the water availability tool for environmental resources (water),” US
Geological Survey, Tech. Rep., 2015.

[42] U. G. Survey, “National water information system data available on the
world wide web (usgs water data for the nation),” 2016.

[43] E. K. Read, L. Carr, L. De Cicco, H. A. Dugan, P. C. Hanson, J. A.
Hart, J. Kreft, J. S. Read, and L. A. Winslow, “Water quality data
for national-scale aquatic research: The water quality portal,” Water
Resources Research, vol. 53, no. 2, pp. 1735–1745, 2017.

[44] R. S. Regan, S. L. Markstrom, L. E. Hay, R. J. Viger, P. A. Norton, J. M.
Driscoll, and J. H. LaFontaine, “Description of the national hydrologic
model for use with the precipitation-runoff modeling system (prms),”
US Geological Survey, Tech. Rep., 2018.

[45] S. K. Oliver, A. Appling, R. A. Atshan, W. D. Watkins, J. M. Sadler,
H. R. Corson-Dosch, J. A. Zwart, and J. S. Read, “Predicting water
temperature in the delaware river basin,” U.S. Geological Survey data
release, 2021.

